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Groupwork

Exercise G1 (Prime splitting in towers of extensions)
(a) Let K ⊂ L ⊂ M be extensions of number fields and p a prime in OK . If P / OL lies above p and s / OM lies above q

es/p = es/qeq/p and fs/p = fs/q fq/p

(b) Describe how 7 decomposes in K = Q(
p

5,
p

7,
p

11), i.e., find the ramification, inertia degree and the number of
primes above 7 in K .

Exercise G2 (Prime splitting in cyclotomic fields)
The aim of this exercise is to prove the following proposition which describes splitting behaviour of primes in cyclotomic
fields, i.e., in Q(µm), where µm is a primitive m-th root of unity. The consecutive steps of the proof may be illustrated
with use of SageMath.

Proposition Let m=
∏

p pνp be the prime factorization of m and, for every p ∈ P, let fp be the smallest positive integer such
that p fp ≡ 1 mod n

pνp . Then one has in K =Q(µm) the factorization

p = (p1 · · ·pr)
φ(pνp ) ,

where p1 . . .pr are distinct prime ideals, all of degree fp, and φ denotes the Euler function.

(a) Let K = Q(µ), µ a primitive m-th root of unity. Assume that m is a power of some prime number p. Use a minimal
polynomial of µ and its decomposition into irreducible factors over K to prove that

pOK = (1−µ)φ(m)OK .

Use the fundamental equality (see cheatsheet II) to deduce that

OK/(1−µ)OK
∼= Z/pZ .

SAGE: Consider cyclotomic fields for m = 4, 27,5. Find their degree over Q and defining polynomials; factor these
polynomials over Q(µ); find decomposition of p = 2, 3,5 in corresponding cyclotomic fields. It may be helpful to
use the following code and the code from exercise G4:

m =

K.<zetam> = CyclotomicField(m) #zetam is a primitive m-th root of unity

zetam.minpoly() #minimal polynomial of zetam

(b) Under assumptions from (a), compute the discriminant of the basis 1,µ, . . . ,µφ(m)−1 of K/Q.
SAGE: Compute the discriminant of the ideal generated by the above basis for K as in (a). Use the functions
absolute_norm() and discriminant().

(c) Deduce from (a) that OK = Z[µ]+(1−µ)tOK for any t ≥ 1. Use this and the fact that disc(1,µ, . . . ,µφ(m)−1)OK ⊆ Z[µ]
to prove that OK = Z[µ].
SAGE: Verify the statement OK = Z[µ] for K as in (a).
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(d) Now let m be an arbitrary positive integer. Prove that OK = Z[µ].
SAGE: Verify this statement for K =Q(µm) with m= 4 · 9 · 5.

(e) Use Kummer-Dedekind theorem (see cheatsheet II) to prove the above Proposition.
SAGE: Factor first twenty prime numbers in OK for K as in (d) to verify this statement.

Hints:
(b): Let Φm be the minimal polynomial of µ. Relate disc(1,µ, . . . ,µφ(m)−1) to Φ′m(µ). Then differentiate the equation
(X m/p − 1)Φm(X ) = X m − 1 at X = µ.
(d): You may use the following basic fact: Let L and L′ be two Galois extensions of Q of degree n, resp. n′, such
that L ∩ L′ = Q. Let ω1, . . . ,ωn, resp. ω′1, . . . ,ω′n be an integral basis of L/Q, resp. L′/Q, with discriminant d, resp.
d ′. If d and d ′ are coprime, then {ωiω

′
j : i = 1, . . . , n; j = 1, . . . , n′} is an integral basis of LL′, of discriminant dn′d ′n.

(e): First show that for m = pνM , p - M , the minimal polynomial Φm(X ) of primitive m-th root of unity satisfies
Φm(X ) ≡ ΦM (X )φ(p

ν) mod p. Then reduce to the case p - m and show that Φm(X ) doesn’t have multiple roots mod p as a
divisor of X m − 1. Observe that Fp fp is the splitting field of the polynomial Φm mod p.

Exercise G3
Let L/K be a Galois extension such that Gal(L/K) is not cyclic. Show that no prime p of K is inert, i.e. pOL is never a
prime ideal in L.

Hint: Show that if p is inert, the decomposition group of p, Gal(L/K), is isomorphic to the Galois group of a finite field
extension. These are all cyclic.

Exercise G4 (A cubic extension)
Let L = Q(α) be the cubic extension of Q generated by α with minimal polynomial P(X ) = X 3 − X − 1. In this exercise
you should use SageMath to help with the calculations. Here is a code snipped to get you started.

Pol.<x> = PolynomialRing(ZZ) #Defines a polynomial ring

P = x^3-x-1

L.<a> = NumberField(P) #Defines the number field generated by a root of P

OL = L.ring_of_integers()

OL.basis()

L.disc()

L.factor(5) #Gives the prime factorisation of (5) in L

P.factor_mod(5) #Factors P modulo 5. This is closely connected to L.factor(5).

(a) Let H be the splitting field of P and let α1,α2,α3 be the roots of P in C. Show that
p

disc(L) ∈ H and conclude
that L is not a Galois extension of Q.

(b) Show that a prime p can split in L in the following ways:

pOL =



















p1p2p3 with epi/p = fpi/p = 1,

p1p2 with epi/p = fp1/p = 1, fp2/p = 2,

p with ep/p = 1, fp/p = 3

p1p
2
2, if p = 23, with ep1/p = fpi/p = 1, ep2/p = 2.

Find examples for all of these cases. Consider the Euler product

ζL(s) =
∏

p

ζL,p(s),

and write down what ζL,p(s) is, depending on the splitting behaviour of p. Show that L(s) = ζL(s)ζ(s)−1 is
meromorphic on C and holomorphic in Re s ≥ 1 and write down an Euler product of this L-function.

(c) Consider the following diagram of extensions:

Q

K =Q(
p
−23) L

H =Q(α,
p
−23)
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Which of the extensions you see are Galois? Write down the corresponding Galois groups.

(d) Show that p is inert in K , i.e., pOK is a prime ideal, if and only if pOL = p1p2.

(e) Show that

ζH(s) = L(s)2ζK(s),

by comparing local Euler factors.

A Show that L(s) extends to a holomorphic function on C or, in other words, every zero of ζ(s) is also a zero of ζL(s).
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